

Can we detect short-term fluency development after 2 hours of chat with a dialogue system?

Serge Bibauw

Universidad Central del Ecuador · UCLouvain · KU Leuven

CALICO 2022 Seattle, June 4, 2022

Fluency development with a dialogue system

- Project: Effectiveness of dialogue systems/dialogue-based CALL
 - with Louis Escouflaire, Thomas François, Piet Desmet

• Theoretical challenge:

Developing fluency with written practice with dialogue system.

Methodological challenge:

Precise measurement of fluency, to detect short-term gains.

Utterance fluency and fluency development Dialogue systems

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Utterance fluency and fluency developmentDialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

L2 fluency

(Segalowitz, 2010)

- Cognitive fluency
- Perceived fluency
- Utterance fluency

L2 fluency

(Segalowitz, 2010)

- Cognitive fluency
- Perceived fluency
- Utterance fluency (performance)
 - Speed fluency
 - Breakdown fluency
 - Repair fluency

Utterance fluency & L2 proficiency

- Interested in relation to **L2 proficiency** (Tavakoli et al., 2020) for
 - Predicting speaking proficiency
 - Fast (initial) rating of learner/user
 - Detecting short-term development
 - ⇒ autonomous language learning apps
 - Evaluating effects of spontaneous/interactive output on fluency
 - ⇔ ouptut hypothesis/interactionist perspective

Fluency metrics to predict proficiency

- Speed fluency Length/Time
 - ✓ good differentiator between fluent/non-fluent (e.g., Bosker et al., 2013; Hilton, 2014; Götz, 2013; Kahng, 2014)
 - Speech rate ✓ (Detey et al., 2020) [# syllables / total time]

 - Syllable duration: ✓ (Segalowitz et al., 2017; Saito et al., 2018)
 [phonation time / # syllables]

Speed/Breakdown fluency ⇒ Runs Length/Pauses

• Breakdown fluency Pauses/Time

- Duration of silent pauses: ★ (de Jong & Bosker, 2013; de Jong et al., 2015)
 [total silent pausing time / # silent pauses]
- Filled pauses rate: ★ (Cucchiarini et al., 2002; Segalowitz et al., 2017)
 [# filled pauses / total time]
- Also: Pause location: Mid-/Final-clause pause ratio (discarted temporarily here for technical reasons)

Repair fluency

- False starts, corrections and repetitions
- x not good proficiency differentiator, nor predicitve of comm.
 adequacy or perceived fluency

(Cucchiarini et al., 2002; Révèsz et al., 2016; Saito et al., 2018)

• Many other metrics...

Fluency development

- Most studies on fluency gains: study abroad context
 - Long-term: 3-24 months (O'Brien et al, 2007; Mora & Valls-Ferrer, 2012; Huensch & Tracy-Ventura, 2017)
 - "Short-term" = 5 weeks (Segalowitz et al, 2017)
 - o Instructed: 3-4 months (Temple, 2005; Galante & Thomson, 2016)
 - ⇒ Possible to measure shorter-term gains with precise metrics?
- Fluency development < spoken interactions (Derwing et al., 2008)
 - Consensus: lack of speaking practice in classroom (Derwing, 2017)
 - ⇒ Can technology help?

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Dialogue-based CALL

- Chatbots, dialogue systems, conversational agents, talking robots, smart speakers... (Bibauw et al, 2019)
- Large potential: meaningful spontaneous practice (spoken/Written)
- Low-anxiety, fully controllable environment

Dialogue-based CALL → Fluency?

- We know very little... (Bibauw et al, 2022)
 - $\circ \ d = 0.39$ in meta-analysis, but not significant
 - vs. d=0.58 overall effect

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Research design

Vocabulary Size Test

Research design

Research design

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game
Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Intervention: Dialogue-based CALL game

- Interactive practice with a dialogue system
 - integrated into a video game
 - sponteanous written interaction (chat) + multimodal input
 - guided by microtask prompts

|--|

Participants

- ullet N=164 (initially N=228 but incomplete/problematic data)
- 4 schools, 11 classes
- 12-13 y.o. (2nd grade BE/8th grade US/Year 9 UK)
- L1: Dutch
- L2: French ~A1+→A2
 (but some outliers: up to B2 + heritage speakers)

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game

Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Computer-delivered speech test

- Autonomous simultaneous speaking test
 - Individual, in-class & simultaneous,
 - with headset, in front of indiv. computer
- 24 questions
 - from basic ("How are you?") to questions targeting specific communicative functions ("Can you describe your French teacher?")
- Oral question + written transcription
 - then automatically starts recording
 - 30 sec limit or "Next question" button

Automated speech analysis

- Data: >10 000 audio files (wav , 2-30")
 - N=228 * 24 questions * pre+post
- Transcription: automated speech recognition (Google Cloud Speech-to-text)
 - Manual revision of transcriptions
- Manual annotation of filled pauses, L1/LF use, disfluencies...
- Automated detection of silent pauses & phonation time:
 - Praat Syllable Nuclei detection script (de Jong et al., 2020)
- Automated computation of # syllables from transcript
 - with different pruning alternatives

Tier Spectrum Pitch Intensity Formant Pulses

Validation of fluency metrics

- Internal consistency
- Comparison of metrics for proficiency (per-participant correlation)
 - Vocabulary Size
 - quick but reliable estimate of L2 proficiency (Noreillie et al., 2018; Milton, 2013)
 - Vocabulary Size Test
 - productive (gap-filling, with 1st letter + L1 translation given)
 - even better correlation with speaking proficiency (r = 0.77 in Koizumi, 2005; r = 0.79 in de Jong et al., 2012)
 - standardized & validated (Noreillie, 2019)
 - 30 words, 1K frequency band (A1)

VS1_6	
Dans une	e démocratie, c'est le p (volk
VS1_7	
Le génér	al j (oordelen) qu'il n'est pas néo
VS1_8	
Il a été c	ondamné à une <mark>p</mark> (<i>straf</i>) de pri
VS1_9	
La p	(verovering) de la Bastille a été ur

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Automated estimators vs. Manual annotation

Raw metrics	MAE (accur.)	RMSE	R^2 (consist.)	Cr. $lpha$ (int.cons.)	r_{VS}
Nb of syllables (auto count, manual trscpt)	"truth"			.92	.373
→ Google ASR transcript (auto count)	1.23	2.93	.874	.91	.370
→ Syllable Nuclei Praat script (de Jong et al.)	4.25	7.60	.585	.88	.154

Pruning

Number of syllables Variant / Pruning	M	SD	$\operatorname{Cr.} lpha$	r_{VS}	$r_{SR ext{-}VS}$
Unpruned (manual transcript)	13.4	5.44	.92	.373	.579
'Meant': - disfluencies (f.pauses, repet., self-corr., meta)	12.2	5.10	.92	.443	.597
'Meant', L2-only: – L1/lingua franca words	12.1	5.07	.93	.459	.603
'Meant', L2-only, - proper nouns	12.0	5.02	.93	.473	.609

- ⇒ Pruning improves the meaningfulness of length-based metrics
- ⇒ 'Harsher' pruning increases predictive power

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency
Longitudinal fluency development

Best predictors of L2 proficiency

- Speech rate? Articulation rate?
- Length of runs? Duration of runs?
- Duration of silent pauses? Silent pauses rate?
- Speech-time ratio?

Length of runs is the best predictor of proficiency

r = 0.628, N = 164

Best predictors of L2 proficiency

•	Length of runs	(syll. runs), pruned*	.628
	Lenguioniuns	(5)11. i ui i5), pi ui ieu	.020

• 5	peech rate, pruned	.609
-----	--------------------	------

- Articulation rate, pruned .524
- Syllable duration⁻¹, pruned .473
- Number of syllables, pruned .473
- Number of words, pruned .463
- Silent pausing rate⁻¹ .428
- Duration of runs (phon. runs) .352
- Speech-time ratio .305
- Pause duration⁻¹ .197

Based on correlation with Vocabulary Size, Pearson's r

^{*} Pruning: removed disfluencies, repetitions, meta-discourse, L1/LF words, proper nouns

Utterance fluency and fluency development Dialogue systems / Dialogue-based CALL

Data & Methods

Dialogue-based CALL game Speech test and semi-automatized analysis

Results & Discussion

Metrics of fluency ⇔ Proficiency Longitudinal fluency development

Developmental Sensitivity of selected Fluency Metrics

Significant, Medium Effect on Speech Rate (partial task repetition effect)

Conclusions

- Possible to measure very short-term gains!
- Automated metrics work.
- Harsh **pruning** improves predictive power.
- Best predictors of **L2 proficiency**:
 - Length of Runs > Speech Rate > Artic. Rate
- Best developmental **sensitivity**:
 - Speech Rate > Artic. Rate > Syll. Duration⁻¹ > Length of Runs
- Dialogue-based CALL: large potential, but needs a slightly longer intervention

Questions, feedback & suggestions welcome!

Serge Bibauw

[sbibauw@uce.edu.ec]

[https://serge.bibauw.be]

Developmental Sensitivity of selected Fluency Metrics

Download the slides

[https://cutt.ly/calico22]

R scripts: e-mail me!